Matematika

Pertanyaan

Tentukan persamaan garis singgung lingkaran berikut.
a) L= x^2 + y^2-4x+6y-7=0 tegak lurus garis x+2y=7
b) (x-3)^2 + (y+2)^2=25 bergradien √3

1 Jawaban

  • a) L = x²+y²-4x+6y-7 = 0, tegak lurus x+2y=7
    A=-4 B=6 C=-7
    O(a,b) = (-A/2, -B/2) = (2,-3)
    r = √a²+b²-C = √20
    m = -1/2, karena tegak lurus maka,
    mg×m = -1 → mg = -1/-½ = 2.

    y-b = mg(x-a) ± r√mg²+1
    y+3 = 2(x-2) ± √20.√5
    y+3 = 2x-4 ± 10
    Pers. garis singgungnya :
    • 2x-y+3 = 0
    • 2x-y-17 = 0

    b) (x+3)²+(y+2)² = 25, gradien √3
    x²+6x+9+y²+4y+4 = 25
    x²+y²+6x+4y-12 = 0
    A=6 B=4 C=-12
    O(a,b) = (-A/2, -B/2) = (-3,-2)
    r = √a²+b²-C = √-3²+-2²+12 = 5
    m = √3

    y-b = m(x-a)±r√m²+1
    y+2 = √3(x+3)±5√(√3)²+1
    y+2 = √3.x +3√3 ± 10
    pers. garis singgungnya :
    • x√3 - y + 8+3√3 = 0
    • √3 - y - 12+3√3 = 0

Pertanyaan Lainnya