integral sin(ln(5x) dx
Matematika
nurulafin13
Pertanyaan
integral sin(ln(5x) dx
1 Jawaban
-
1. Jawaban Anonyme
∫ sin (㏑ 5x) dx
u = 5x
du / dx = 5 → dx = du / 5
= 1/5 ∫ sin (㏑ u) du
v = ㏑ u
dv / du = 1 / u
v = ㏑ u → u = e^v
∫ fg' = fg - ∫ gf'
f = sin v → f' = cos v
g' = e^v → g = e^v
∫ e^v sin v dv = e^v sin v - ∫ e^v cos v dv
∫ fg' = fg - ∫ gf'
f = cos v → f' = -sin v
g' = e^v → g = e^v
∫ e^v cos v dv = e^v cos v - ∫ e^v (-sin v) dv
= e^v cos v + ∫ e^v sin v dv
Jadi
∫ e^v sin v dv = e^v sin v - (e^v cos v + ∫ e^v sin v dv)
∫ e^v sin v dv + ∫ e^v sin v dv = e^v sin v - e^v cos v
∫ e^v sin v dv = 1/2 (e^v sin v - e^v cos v)
1/5 ∫ u sin (㏑ u) du / u = 1/2 [u sin (㏑ u) - u cos (㏑ u)]
∫ sin (㏑ 5x) dx = 1/10 [5x sin (㏑ 5x) - 5x cos (㏑ 5x)] + C
= 1/2 {x [sin (㏑ 5x) - cos (㏑ 5x)]} + C